If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x^2)+16x+3=0
a = 2; b = 16; c = +3;
Δ = b2-4ac
Δ = 162-4·2·3
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{58}}{2*2}=\frac{-16-2\sqrt{58}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{58}}{2*2}=\frac{-16+2\sqrt{58}}{4} $
| 11x-6x+186=11x+84 | | (8+2x)(12+2x)=252 | | 420=x+3x | | 7k-35=5(1+2k)+2k | | 7x+9x-40=80-4x | | 4k+2=-18 | | 9u-47=-8(u+8) | | 3.5g+10=1.5g+22 | | -3x+9=-14x-15+14x | | -3-3r=12 | | z+3z=188 | | 2x+3(-5+2x)=1-x | | -3x+9=14x-15+14x | | y=8(4) | | 3x-(-2x+16)=4(x-4)+x | | 6x-11x+186=11x+84 | | 3/5x+6=1/5x+5 | | 2(x-3)(x+5)=3x^2 | | 2/18=5/m | | 3x-4=4x-18 | | x/10=30-5x | | 3x-x/2=10-5 | | -6+10a=-106 | | 5x-4+4=12+4 | | X-7=4x+6 | | $0.15m+$20.00=$84.20 | | 41=3w+17 | | 91=p+4 | | -10x+15+2x=-9 | | 0x+2=2x-7 | | -4(x-8)=-6(4+3) | | h4– 3= 3 |